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CAUCHY PROBLEM FOR EQUATIONS OF INTERNAL WAVES™

S.Ia. SEKERZH-ZEN'KOVICH

The Cauchy problem is considered for the equation of internal waves to which reduce
many problems of the linear theory of waves in a continuously stratified fluid. The
theorem of uniqueness is proved, and the formula for explicit representation of
solution in terms of integrals whose kernels contain the obtained in /1/ fundamental
solution of the internal wave operator and its time derivative are derived. Asymp-
totic analysis of solution in the "distant zone" is carried out for large values of
dimensionless time.

The Cauchy problem for the equation defining the propagation of long gravitational waves
in a rotating compressible barotropic fluid was first solved and its solution asymptotically
analyzed by Obukhov /2/ in 1948. A singularity of the internal wave equation is that it is
insoluble for the higher time deriative of the sought function. Sobolev, while investigating
unsteady motions of a rotating fluid /3/, was the first to solve the Cauchy problem for an
equation of this type which differed from the inner wave equation only be the substitution of
the second-order derivative with respect to one three-dimensional variable for the two~-dimen-
sional Laplace operator. Sobolev's equation and certain of its extensions were considered in
several papers /4—6/ et al). 1In /7,8/ the Cauchy problem was considered for a system of
differential equations in partial derivatives that are insolvable for time derivatives of the
unknown function.

Methods and results of indicated investigations are used below. Thus, the uniqueness the-
orem is formulated in conformity with that in /8/ with the refinement introduced in /4/, its
proof is reduced to the test of fulfillment of conditions of uniqueness theorem for the equa-
tion of internal waves presented in /8/ but, also, with one refinement. A short account of
some results of the paper are given in /9/.

1. Statement of the problem. We define the operator N of internal waves as fol-

lows /1/:
N=-2_ s+ N2A
=5 3 -+ 2 (1.1)
where ¢ is the time, A; is the three-dimensional Laplace operator of space coordinates z,, I,
z3, A, is the two-dimensional Laplace operator of horizontal coordinates Iy, Ty, and N is the
so-called Brunt- Vaisdld frequency which defines density distribution of an inhomogeneous fluid
in its unperturbed state. As in /1/, N? = const > 0 is assumed, which corresponds to the case
when the density p, of the quiescent fluid depends only on the vertical coordinate r, directed
against gravity acceleration in conformity with the law
Po (¥5) = Py (0) exp (—N?g™'zy)
Let us consider the classical Cauchy problem for the internal wave equation

NuE%Asu—}—NzAzu:f(z,t) (1.2)
u fi=p = Uo (), % ey = @) (1.3)

where f(z, t), u, (z) and u, (x) are specified functions, and x = (,;, Z;. ¥3) is a point of the three-
dimensional Euclidean space R®

2. The theorem of uniqueness of solution of the Cauchy problem. Let the solu-
tion of problem (1.2), (1.3) with zero input data and zero right-hand side, whose derivative
with respect to ¢ and, also, the derivatives with respect to z; of first and second order do
not increase as|Z]— oo ata rate higher than [.7:|l,where 1> 0. Then that solution is a poly-
nomial in &, Z,, 3 of power not higher than | with coefficients that depend on ¢ and vanish
when ¢ = 0.
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Proof. setting in Eq.(1.2) f =0 and introducing functions w,; = u, w, = —0du/dt, we re-
duce it to the equivalent system of equations in w, (2, t) and w,y (z, t)
8 a
_—;l = ~—— W, —o—t-AQIUQ=N2A2w1 (2.1)

System (2.1) belongs to the class of systems considered in /8/. To make use of results
of that work, we set, as in /8/.
wi (2, t) = v (t; §) exp [—i(z, D), &k =1, 2
(% B) = o1&y + 7.8 + 2:8s

and obtain for the vector function v = (v, v,) the system of ordinary differential equations

M® =L@V

M_“1 0 L 0 —1 (2.2)
- OIEI'“’ =“N’(§1”+§=’) 0 :

Applied to this system, the conditions imposed in the uniqueness theorem in /8/ must be
such that for t = [0, T] the conditions must be satisfied:

1) Elements vy, of the fundamental system of system (2.2) must satisfy the inequalities
lonm |SATEY g0, 12]1<1 (2.3)
loem |[SKANEP, p0, |E1>1
where, and subsequently, A denotes arbitrary constants;

2) det M (}) must be a polynomial in §; vanishing only when |%| =0, and after the sub-
stitution §; = &, || can be represented in the form

det M = |E[P(ap+a, [E|+...+ac|EI6), a0 (2.4)
3) The elements of matrix || pu|l = M™'L must satisfy the inequalities
I ISATE [EI< Tma ISALET [EI>1 (2.5)

For system (2.2) the inequalities (2.3) .and (2.5) are satisfied.
Indeed, the fundamental system of solutions of system (2.2) is of the form

V3,1 = CO8VE, vy g = —V !sin vt
vg,1 == v sin V¢, g4 = cos vt

v=N|E[| &2+ &

which implies (2.3) and ¢=p=0.
Matrix | py| for system (2.2) is

0 —
“p'lk“:'"v, 0“

which implies (2.5) and s=r=0.

The determinant of matrix M (E) for system (2.2) is equal | §[* and, consequently, is a
polynomial in §,, that vanishes only when |f|=0. It can, however, be represented in the
form (2.4) with ayags% 0 by refining the formulation of condition 2) by explicitly indicating
the admissibility of the case (G = 0, since the proof of the theorem remains valid in this
case.

Thus, all conditions imposed in the uniqueness theorem in /8/ are satisfied for system
(2.1), moreover functions w, and w, belong to the class for which that theorem was proved.Thus
the statement of the uniqueness theorem given in /8/ and refined in /4/ is also valid for (2.1).

In the case of (2.1) it reduces to the statement that system (2.1) satisfies the following two
systems of equations

[
wy= P, — W=

AgWa=Pg' N'A|w1=%

where P, (i, z)and P, (!, z) are polynomials in z, of power not higher than [, with coefficients
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dependent on {, which satisfy the initial condition P, (0, z) = 0.

To complete the proof of the uniqueness theorem for the internal wave equation we point
out the solution of the eguation considered here agrees with function w, (in the gense in
which the latter was introduced}.

Corollary. 1If the conditions of the theocrem specify that the solution must approach
zero as | & |- oo, while retaining previous requlremem:s as regards the solut:.on dexivatlves,

the Cauchy nrobhlem (1.2 {1.3) with zarn in 2l da+a and zero ricmht.ha 5414
1e Cauchy preoblem (1.2), (1.3) with zero initial data and zero right~hand sid

zero solution.

3. Solution of the Cauchy problem for the equation of internal waves. Let
us assume that the right-hand side of Eq. (1.2} with initial data {1.3) have the following
properties: function §(z, #) is continuous in Af when !> (,the products of functions A, {(z),

Agu, (z) and their first order derivatives are integrable on 1f[z |, and that function f(z, 1)
and its derivatives with respect to z; have the latter property for every >0, and as
|z |+ o the relations

wm@=o(l) m@=oll) Far=oll)h FH=0()

apply.

Let us derive the problem solution using the apparatus of the theory of generalized func-
tions.

First, in conformity with the general scheme /10/ we formulate and solve the generalized
Cauchy problem for Eg. (1.2}.

Let us ascums the existemn

£ Nlam 1.2} {1
solutio £ lem {1
introduce functions y* (2, ) and J* (z, §} that coincide for t > 0, respectively, with {z &

Yo
jeiaeie [ I

and f{z, 1) and are zerc for t< 0.
T +ho space of aeneralized functiens D' (BY funotion u* (z. 1) satisfies the scuation
In the space of generalized functions LD (1% function u* (z, {) satisfies the eguation
Nu¥ = f* (2, 8) + Agtp (x) X 8" (1) ~+ Agity (2) X 6 (1) (3.1)
..... e wnd bl T smd ol mmmbad o ALt e Tt ol ekt Ao A sz £l awm2 A fut  baes RF £t
WOt < LIC J.-Lyl.lb HIQILE DAUT LLUIILQLIID ULL TG W . WL LD VA S MRS LD uawn \l(-, QLI U‘;ui \Ja, M_y o \f/}
and & ().

Indeed, for all functions ¢ {z, ¢} in the space of basic functions D{R!} we have the
sequence of egualities
Lod
(Nu*, ) = (u*, Ng) = lim g{p’\ludxdt-—

EREIP
~1g L

ra

©e

S_a_ql‘_")_ Aqu (z, 8} dz S {z, g) — Asa (2, e)d:c}

RE

By virtue of properties of functions u{z, #) and ¢ (zr, ¢) we can sete =0 in expressions
in brackets, and obtain

(Nu, @) = (7* + Agug () X & (1) + Asiy (%) X 8(8), @ (%, 1)

The generalized Cauchy problem for the operator of internal waves N with source &
D' (R% and initial perturbations u, {z) & D' (8% and u, (1) & D' (H") is understood here as the
problem of finding the generalized function u* {z, {) & D’ (R%} that vanishes for (<0 and
satisfies Bg.{3.1}.

If functions f{z, 1), 4, (¥} and u, (2} are such that a convolution of the right-hand side
of Eqg.(3.1) with fundamental solution of operator N exists in D’ (R*), a solution of the gen~
eralized Cauchy problem (3.1) exists in [’ (R%) and is defined by the formula

u* (2, ) = [* (2, 1) » B (@, 1) + [Aoun (z) X 8@ » ZEE D 4 (A (@) x 8 (B B 0) (3.2)
1
. 84 sin Niu du
B =—gmwye S (@t — a2 BT —uy

Yxalflx]

where the symbol # denotes convolution of functions, and £ is the fundamental solution of the
internal wave operator, derived in /1/.

If functions u, (z), 4y (x}) and f(x, f) possess the properties defined. at the beginning of
Sect.3, the unique solution of the classical Cauchy problem (1.2}, (1.3) is defined by form-
ula

4
u(x,i)zg ’S; O E{r—tt —nydidt - 3asao<§} (e —E OdE+ )ﬂaﬂzxs)t&az”—g»zm (3.3)
0

R
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To prove this we point out, first of all, thaton the assumptions made above the right-
hand side of formula (3.2) exists in D'(RY and is expressed by formula (3.3), i.e. the latter
is the solution of the generalized Cauchy problem (3.1), which holds without the stipulation
of existence of third order derivatives in u, (z), 4;(z) and of first order in f(z,1¢).

Function u(z,t) represented by formula (3.3) has for ¢>0 continuous second order deri-
vatives with respect to z; which, in turn have second order derivatives with respect to :.
Indeed, it is possible to differentiate once the integrands in (3.3) with respect to gz;, since
the derivatives of E (x+ — &, t) have integrable singularities of the type |z —&|™? and decrease
as |El— o but not slower than A|§[™?. This property of the fundamental solution is deduced
from the following representation(*):

i § sin [Nt (2 4 2/ | 2 [ (2 1) do

2N |z | p @2+ 2ot/ | = [2)' 2 (2 + 1)

E(I,t):—

since differentiation of the integrand of the last integral with respect to z; is admissible.

The integrands in (3.3) can be differentiated for the second time with respect to z;,
after the introduction of the new variable of integration n ==z —§ Validity of this operation
is based on the requirements imposed on Asue(z) and Agy (z). The differentiation of integrands
in (3.3) with respect to ¢ can be carried out any number of times. Hence the generalized solu-
tions of Eq. (3.1) has for ¢>0 the required number of classical derivatives for operator .v;
it is consequently, the classical solution of Eq.(3.1) when #>0, hence, also, of Eq.(1l.2).
As t— 40 , function u(z,t) satisfies the initial conditions (1.3), since the first integral
in the right-hand side of (3.3) is at the limit zero, while it is possible to set t=0 in the
integrands of the other two integrals.

Hence the constructed function u(z,t) is the solution of problem (1.2), (1.3).

Moreover, since function (3.3) approaches zero as |[z|— o and its derivatives appear to
be, at least, bounded, hence by virtue of the corollary of the proved uniqueness theorem, this
function is the unique solution of the Cauchy problem (1.2), (1.3).

Remark. Since input data appear in formula (3.3) in terms of Laplace operators of
initial functions, hence the indicated fundamental solution may be called the fundamental
second order solution of the Cauchy problem considered here /4/. By analogy with /4/ we can
show that such solution has a singularity only at the coordinate origin and is differentiable
the required number of times outside that point and uniformly approaches zero with increasing
distance from the coordinate origin, is unique.

4. Asymptotic representations of solution of the Cauchy problem and their
hydrodynamic meaning. we shall Qerive the asymptotic representation of solution of the
Cauchy problem (1.2), (1.3), assuming the right-hand side f(x, t) of Eq.(1.2) equal zero. We
use formula (3.3) and formula (7) from /9/ written in the form

u ()= § 101 (®) exp (D) + Qu(®) exp (1®y)] (4.1)

R

Qs (B) = 167'n~° {Fux lugl + i (—1)'Fx [u,]/w (8))
Q)=—@H—(—1/v@t Felu)= S u;(x) exp {i (z, &)} dx

Rs
It is reasonable to assume that functions u,(x) and u, (z) satisfy the conditions of ap-
plicability of formulas used here.
Let us consider three cases assuming in the first and third of them that u,(z) and u, (r)
are nonzero only in some region B of diameter d and containing inside the coordinate origin.

The distant zone. This zone contain points z for which |z [/[d> 1, i.e., in so-called,
the distant zone. The solution will be investigated for time ¢ in the interval [0, ;] where
t1< 0.

We shall use formula (3.3) which can be represented in the form

u(a, )= 2220 Asun<§>d§+E<x.t>§ Bgus §) &%+ R (-, Nt) 4.2)

B

|RI< W1zl [ @+ M) T §awe @12 + an {1 s @8]

fzff )

*) V.A. Gorodtsov and E.V. Teodorovich, Linear internal waves and exponentially stratified per-
fect incompressible fluid. Preprint No.114, Inst. of Problems of Mechanics, Bkad. Nauk SSSR,
Moscow, 1978.
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From the estimate (4.,2) we obtain on the above asgumptions the following approximate form-
ula for the solution of the Caunchy problem in the distant zone

a (e, s§~§%ﬁ§m§3é§+3{x,tz &m;{g}az (4.3)

Large values of Ntand fixed #. Using representation (4.1) and introducing new vari-
ables of integration =, #, ¢ by formulas
t, = tlr Fisin B cos{p -+ g & = v [x]F sin 0 sin {p -4 @} (4.4}
Ba=tlxftcosth
Sin @y = LT, 008 Py = Tyir, v = {57 4+ o,

we repregent (4.1) thus:

i

ts(:g,t)w-&%« {fo (8, 2) sin B cos (Nt sinB) -+ %wf;(ﬂ,z)sin()\ftsiné)}dﬁ (4.5)

ey

18 >
3 L F s . {4.8}

16, z}mwiﬂﬁ?g zzxggfzfa;}exp {»—-w{—-;*f cosht + T=7 szﬁﬁg&,m}} Ty

0

Applying the method of stationary phase we obtain in this case from (4.5) the following
asyiptotic formula:

Uz, 8 ~ Q)R (ND~F i, (02, 2) cos (N1 — w/d) + N7 f (a2, z) sin (Nt m/a}} 4.7

Large N: and fixed o= |z} /{dN1#)- Using again formula (4.1) and introducing new vari-
ables for integration P, §, ¢ by formulas which differs from (4.4) in that BNt has heen sub-
stituted for 1, we write (4.1) as follows:

an.]a o n

aeiy= | dol B2dp{1Qy exp (NI + Qo' exp (N1 W2)] 0 (4.8)
~%fE 8 ®

Qf == 2% {ndwy® {Fy lugd gin & + 8- (—1¥F, Tud}

o {—4F* gin 8w B {z5/ {2l cos O o 7 {21~ sin 6 cos ¢)

We apply the method of stationary phase /11/ for multiple integrals in the analysis of
the triple integrals in (4.8).

Having solved the eguations
gra@d ¥y =0, =4, 2

we find the points of gtationary state with the following values of variables @, 88

gome— -, 2 B =T =0 for ¥, and Vi (4.9)
10, Br=—5-(1 -+ sgnan) —arcsingZy, =1l for ¥ (4.10)
pa=1, fp=-F-(1—sgnas) +aresin T, Po=yL for ¥y (4.11)

Assuming that functions Fy [w,] and F, lu,] do not have singularities when e (, we can
neglect the contribution of points (4.9) to the value of integral (4.8) because of the pres-
ence of cofficient f? in the integrands. Consequently, we calculate only the contribution
of points (4.10) and (4.11) for which we have

L e VA EN FEFY
jdet Hess V=l 1731218 sgnfiHems Vil = {...1}54-3
where Hess ¥, is the Hessian matrix of functions ¥,

Taking into account the last formulas we find that as N¢— oo with fixed o the principal
term of the asymptotic expansion of inteygral (4.8) is of the form

w(z, ) ~ AN (ol (25 | - |z ¢.12)

U2l Tz PP Re Py lugl 8y — Im F,' {u,d S,) +
N {BRe F lu,l 8, 4+ Im Fy i 8y}

Syes cos(Neloy [/ {2 |+ n/h), S, = sin (We]zy |/ ]2 |+ nid)
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where Re F,/ [uy] and Im F.' [u,] ( j=0,1) are, respectively, the real and imaginary parts of
functions Fy{u;] at point (4.10) on the supplementary assumption that zy== 0.

The derived formulas (4.3), (4.7), and (4.12) give a hydrodynamic picture capable of
fairly clear interpretation which enables us to come to a number of conclusions relative to
the process propagation of initial perturbations of a perfect incompressible continuously
stratified fluid with constant Brent— Viisfli frequency.

Formula (4.3) implies that in the distant zone the internal wave field generated by in-
itial perturbations occurring in some region B, have the same structure as the field defined
by the fundamental solution E(z, t) of the internal wave operator. The difference concerns
the wave amplitude which is indicated by the presence in (4.3) of amplitude multipliers equal
to integrals of functions Agup(r) and Agu, (z) taken over region B.

This conclusion is valid, as seen from estimate (4.2), only from fairly large relations

| z {/d, which increases with increasing time from the instant of initial perturbation action
to that of observation, and the relation |z |/¢ should also increase,

Formulas (4.7) and (4.12) enable us to assess the nature of the process for large values
of the dimensionless time Ng

It follows from (4.12) that in the case of large dimensional time for cobservation points
at distances |z | = wdN¢, where o is fixed and nonzero, from the coordinate origin, progres-
sive waves similar to those described in /1/ propagate in the fluid in fairly distant regions
of space. Singularity of these waves is in that they appear to radiate at frequency N from
vertical semiaxes z3 >0 and z3<C 0 are then absorbed by the horizontal plane z43 = 0; the
equal phase surfaces of these waves coincide with the conical surfaces |zg|/ |z | == const.
The angular velocity of these surfaces is ayt-! (x> + %)Y

Similar waves were observed in laboratory experiments /12/ where internal waves were
induced in linearly stratified fluid by the initial perturbation concentrated in very small
region. It is interesting to note that the photographs b and ¢ of Fig.2 in /12/ show that
regular wave systems recede more and more from the initial perturbation region with increas-
ing time.

It follows from (4.7) that in the later stages of development of the process in a fixed
observation area, fluid motions are of the standing internal wave type with the Brent--Vaisiald
fregquency. The amplitude variation of these waves in space is defined by formula (4.6) from
which it is difficult to draw any conclusions without specific definition of initial functions
uy (z) and u, ().

With increasing time the amplitude of standing waves decreases as (Ni)-'/s, while at the
same time the solution of the Cauchy problem for Sobolev's equation diminishes with passing
time as ¢ /S5/.

The conclusions based formula (4.7) must, obviously, be treated with caution, since dur-
ing the later stages of a real process the effect of viscosity, which is not taken into ac-
count in this work, considerably increases.
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